SYNTHESIS OF METHYL 6-AMINO-4,6-DIDEOXY- α -d-XYLO-HEXOPYRANOSIDE

Yoshio Abe, Susumu Nakagawa, Takayuki Naito and Hiroshi Kawaguchi Bristol-Banyu Research Institute, Ltd. Meguro, Tokyo, Japan

(Received for publication August 19, 1977)

In a previous paper¹⁾ we reported the synthesis of 4'-deoxykanamycin A (Fig. 1) and showed that the compound inhibited kanamycin-resistant organisms that produced aminoglycoside-3'phosphotransferase II. Since the synthetic 4'deoxykanamycin A described in the previous paper was characterized mainly by NMR spectroscopy, a definite identification still had not been made for the constitutive new sugar moiety, 6-amino-4,6-dideoxy-D-glucose.* This paper presents the synthesis of methyl 6-amino-4,6dideoxy- α -D-xylo-hexopyranoside (Scheme 1) and its identity with a fragment obtained from the hydrolysis of 4'-deoxykanamycin A.

Two hydroxyl groups of methyl 4-O-benzoyl-6-bromo-6-deoxy- α -D-glucopyranoside³) (1) were protected with a tetrahydropyranyl (THP) group to give **2**. Treatment of **2** with sodium azide in dimethylformamide (DMF) - water afforded the 6-azido derivative (**3**) as a syrup in quantitative

Scheme 1.

* Preparation of 2,3-di-O-benzyl-4,6-dideoxy-6ethoxycarbonylamino- α -D-glucose was reported by S. UMEZAWA *et al*²⁾.

yield. IR (liq., cm⁻¹): 2110 (N₈); NMR (DMSOd₆, δ in ppm): 1.55 (12H, m), 4.5~5.1 (4H, m, anomeric protons & H-4), 7.25~7.95 (5H, m, benzene ring protons). The 4-O-benzoyl group of **3** was removed by treatment with sodium methoxide in dry methanol to give **4** as a syrup in quantitative yield, whose TLC* showed two spots of comparable size at Rf 0.05 and 0.17.

Protection of a hydroxyl group with a THP group has been known to yield diastereoisomers in some steroids, sugars and nucleosides⁴), and this was found to be the case with compound 4 as evidenced by the following experiments: compound 4 was mesylated to give 5 showing on TLC* two spots at Rf 0.32 and 0.54, which, on separation by silica gel column chromatography, afforded 5a as prisms (48% from 5, Rf 0.32) and 5b as a chromatographically homogeneous syrup (52% from 5, Rf 0.54). Compound 5a: m.p. $137.5 \sim 138^{\circ}$ C, $[\alpha]_{D}^{26.5} - 83.3^{\circ}$ (c 0.5, acetone); IR (KBr): 2100 (N₃), 1180 (SO₂); NMR (acetone d_6): 1.2~1.9 (12H, m), 3.23 (3H, s, $-SO_2CH_3$). Anal. Calc'd for C₁₈H₃₁N₃O₉S: C, 46.44; H, 6.71, N, 9.03; S, 6.89. C, 46.49; H, 7.03; Found: N, 9.07; S, 7.04.

Compound **5a** was hydrogenated in the presence of palladium on charcoal, and the product (**6a**) was treated with ethyl chloroformate to give **7a**, Rf 0.36**. IR (KBr): 1705 (amide), 1175 (SO₂). Two THP groups of **7a** were removed by treatment with trifluoroacetic acid in aqueous THF to afford **8**, m.p. $129.5 \sim 130.5^{\circ}$ C, $[\alpha]_{D}^{27}$ +115° (*c* 0.5, MeOH); NMR (acetone-d₆): 3.25 (3H, s), 4.23 (1H, dd, J=9 & 8.25 Hz, H–4), 4.66 (1H, d, J=3.45 Hz, H–1).

Anal. Calc'd for C ₁₁ H ₂₁ NO ₉ S:	C, 38.48; H, 6.16;
	N, 4.08; S, 9.34.
Found:	C, 38.85; H, 5.89;
	N, 3.75; S, 9.29.

Similarly, **5b** was reduced to give **6b** which was converted to **7b**, Rf 0.45**, IR (KBr): 1725, 1175, and then to **8**, m.p. $130 \sim 131^{\circ}$ C, $[\alpha]_{D}^{27} + 117^{\circ}$ (*c* 0.5, MeOH), which was identical with the product derived from **5a**.

In a preparative run, the diastereoisomeric mixture of 7 was reacted with sodium iodide in acetone at 125° C for 32 hours in a sealed tube to give 9 in high yield, indicating that simultaneous

^{*} silica gel TLC, ether - CHCl₃ (1:15)

^{**} silica gel TLC, EtOH - CHCl₃ (1:30)

Fig. 1. 4'-Deoxykanamycin A

iodination and removal of the THP groups took place as revealed by NMR. Hydrogenation of **9** in the presence of 20% palladium on charcoal and sodium bicarbonate afforded **10** in 94% yield, m.p. 137~139°C, $[\alpha]_{\rm D}^{34}$ +148° (*c* 0.365, H₂O); IR (KBr): 1695; NMR (D₂O, ppm from HOD): 3.45 (1H, q, J=*ca*. 12 Hz, H–4_{ax}), 2.77 (1H, doublet of double doublets, J_{gem} = 12.8 Hz, J_{8,4}=4.9 Hz, J_{4,3}=2.5 Hz, H–4_{eq}).

Anal. Calc'd for C ₁₀ H ₁₉ NO ₆ :	C, 48.18; H, 7.68;
	N, 5.62.
Found:	C, 48.30; H, 7.94;
	N. 5.47.

Hydrolysis of **10** with 1 N sodium hydroxide solution followed by purification of the product on a column of Amberlite CG-50 (NH₄⁺) afforded methyl 6-amino-4,6-dideoxy- α -D-glucopyranoside (**11**) in 85% yield, m.p. 88~89°C, $[\alpha]_{D}^{24}$ + 181° (*c* 0.35, H₂O).

Anal. Calc'd for	$C_7H_{15}NO_4$: C, 47.45; H, 8.53;
	N, 7.90.
Found:	C, 46.97; H, 8.78;
	N, 7.72.

The structure of 11 was confirmed by NMR decoupling experiments using the H-O-D signal as an internal reference (Fig. 2). Irradiation of H-1 proton at -0.11 ppm (d, J=3.8 Hz) caused the double doublet signal at 1.26 ppm (J=3.8and ca. 10.5 Hz, H-2) to collapse to a doublet (J = ca. 10.5 Hz). Irradiation at the center of $0.7 \sim 1.1$ ppm (multiplet), which included signals centered at 0.83 ppm (triplet of doublets, J = ca. 10.5 and 5 Hz, H-3), resulted in collapse of the doublet-like signal at 2.02 ppm (2H, J = 5.6 Hz, H-6) to a singlet, the doublet of double doublets at 2.72 ppm (J=13, 5 and 2 Hz, H- 4_{eq}) to a doublet (J=13 Hz) and also the quartet at 3.36 ppm (J=ca. 12 Hz, H- 4_{ax}) to a doublet (J=13 Hz). Furthermore, irradiation of H-4_{eq} at 2.72 ppm changed the complicated signal of H-3 to a triplet.

Acetylation of **11** with acetic anhydride in pyridine gave **12** in 84% yield, m.p. 125~126°C, $[\alpha]_{D}^{20.8}$ +141° (*c* 0.5, CHCl₃); IR (KBr): 1740, 1650; NMR (CDCl₃): 1.46 (1H, q, J=*ca*. 12 Hz, H-4_{ax}), 2.15 (1H, d-dd, J_{gem}=*ca*. 12 Hz, J_{3,4}= 5.25 Hz and J_{4,5}=2.25, H-4_{eq}), 3.67~4.16 (1H, m, H-5).

Fig. 2. The NMR spectrum of 11 in D₂O at 100 MHz

TLC*	Rf value of hydrolysate			
	11	4'-Deoxy- kanamycin A	Kanamycin A	Identification
System A		0.04	0.04	Deoxystreptamine
			0.29	6-Amino-6-deoxyglucose
	0.33	0.33	-	6-Amino-4,6-dideoxyglucose (13)
		0.39	0.39	3-Amino-3-deoxyglucose
			0.54	A degradation product of 6-amino- 6-deoxyglucose
System B		0.34	0.34	Deoxystreptamine
			0.38	6-Amino-6-deoxyglucose
		0.45	0.45	3-Amino-3-deoxyglucose
	0.52	0.52		6-Amino-4,6-dideoxyglucose (13)

Table 1.	Thin-layer chromatography	on acid hydrolysates of 11,	, 4'-deoxykanamycin A and kanamycin A
----------	---------------------------	-----------------------------	---------------------------------------

 * TLC plate: Merck, silica gel 60 F₂₅₄ (0.25 mm); Detection: ninhydrin. System A: *n*-Propanol - pyridine - acetic acid - water (51: 20: 6: 24) System B: chloroform - methanol - 28% aq.ammonia (1: 3: 2)

Anal. Calc'd for C13H21NO7: C, 51.48; H, 6.98;

Found: N, 4.62. C, 51.30; H, 7.16; N, 4.51.

4'-Deoxykanamycin A^{1} and kanamycin A were hydrolyzed in 4 N HCl and the hydrolysis product examined by two TLC systems. Compound **11** was also treated under the same condition to give **13**, whose solution was used as a reference in the TLC assay. As shown in Table 1, the hydrolysate of 4'-deoxykanamycin A gave three ninhydrin-positive spots which were identified as deoxystreptamine, 6-amino-4,6-dideoxyglucose (**13**) and 3-amino-3-deoxyglucose, while the hydrolysate of kanamycin A showed TLC spots for 6-amino-6-deoxyglucose and its degradation product but lacked the spot of **13**.

References

- NAITO, T.; S. NAKAGAWA, Y. ABE, K. FUJI-SAWA & H. KAWAGUCHI: Aminoglycoside antibiotics. VIII. Synthesis and activity of 4'deoxykanamycin A. J. Antibiotics 27: 838~ 850, 1974
- UMEZAWA, S.; Y. NISHIMURA, Y. HATA, T. TSUCHIYA, M. YAGISAWA & H. UMEZAWA: Synthesis of 4'-deoxykanamycin and its resistance to kanamycin phosphotransferase II. J. Antibiotics 27: 722~725, 1974
- HANESSIAN, S.: The reaction of O-benzylidene sugars with N-bromosuccinimide. I. Methyl 4,6-O-benzylidene hexopyranosides. Carbohyd. Res. 2: 86~88, 1966
- REESE, C. B.: "Protective Groups in Organic Chemistry", pp. 95~143, Plenum Press, London, 1973